Unraveling the *Triticeae*-*Fusarium graminearum* interaction

Gary J. Muehlbauer Department of Agronomy and Plant Genetics University of Minnesota

FHB resistance

Wheat Wheat susceptible Type II R

Barley

- Wheat type II resistance to spread of infection in the spike
- Trichothecenes implicated in virulence
- Wheat 3BS resistant QTL associated with UDPglucosyltransferase activity (deoxynivalenol detoxification)
- Barley endogenous resistance to spread of disease (possible built in resistance (Type II) to trichothecenes)

Barley-Fusarium interaction

• Identify major trends in transcript accumulation in barley during *F. graminearum* infection, trichothecene accumulation and DON treatment

Barley GeneChip was used to measure transcript accumulation

- Examine the fate of DON in barley
- Functionally characterize genes that respond to trichothecenes
- Identify relationship between haplotypes and phenotypes

Fusarium graminearum infection in barley

-Similar infection pathways in wheat

-Events occur earlier in wheat

Major classes of genes induced in barley during *F. graminearum* infection (1–6 days after inoculation)

- Defense response related (PR proteins, GSTs, P450s etc.)
- Oxidative burst related
- Phenylpropanoid pathway
- Trichothecene detoxifying (UDPglucosyltransferases) and transporters (ABC and MATE)
- Tryptophan biosynthetic genes
- Protease inhibitors
- A total of 467 gene transcripts were detected

Three stages of FHB development on barley

Trichothecenes are virulence factors on wheat

- *Tri5* is the first step in the trichothecene biosynthetic pathway
- *Tri5* loss-of-function mutations result in the inability of *F. graminearum* to produce trichothecenes
- Wheat infected with *Tri5* loss-offunction mutations result in reduced virulence - disease spread is reduced, initial infection is similar

Proctor et al., 1995

Disease severity is greater in wildtype inoculated barley plants

Disease severity: Wildtype *strain* = 59.5 +/- 2.5 *Tri5* mutant *strain* = 46.2 +/- 7.9

Deoxynivalenol and ergosterol concentration in wildtype, *tri5* mutant and water inoculated barley spikes

Classes of genes that respond preferentially to trichothecene accumulation

• Induced (63 transcripts)

- Putative trichothecene detoxifying and transporter proteins (e.g., UDP-glucosyltransferases, ABC and MATE transporters)
- Ubiquitination-related (eg., F-box)
- Regulatory factors (e.g., zinc finger proteins, NF-X1)
- Programmed cell death (e.g., pirin)
- Cytochrome P450s

• Repressed (none)

Barley-Fusarium interaction

DON inoculation

Fate of DON in barley

DON is transported to acropetal and basipetal florets DON is converted to DON-3-O-glucoside

UDP-glucosyltransferase

- Arabidopsis DOGT1 encodes a UDPglucosyltransferase
- Glucose from UDPglucose is transferred to hydroxy group at carbon 3
- DON-3-O-glucoside is less toxic than DON

Poppenberger et al., 2003

Dynamics of gene expression after DON treatment

DON application and *in planta* trichothecene accumulation induced barley genes

- Cytochrome P450s
- Cysteine synthase (enzyme for biosynthesis of glutathione)
- NF-X1 transcriptional repressor of trichotheceneinduced defense responses (Asano et al., 2007)
 - WRKY, NBS-LRR, etc. upregulated in T2 toxin (Type A trichothecene) treated NF-X1 Arabidopsis mutants
- Glucosyltransferases
- Transporters (MATE, ABC)
- Transcription factors

Barley UDP-glucosyltransferase that detoxifies trichothecenes

0 ppm deoxynivalenol

120 ppm deoxynivalenol

Nine UDP-glucosyltransferases have been identified Seven have been cloned and four tested One UDP-glucosyltransferease detoxifies DON

(A) pMDC32-UDP-GLUC

~ 51 kDa

(B)

(C)

UDP-glucosyltransferase overexpressed in Arabidopsis exhibits tolerance to deoxynivalenol (20 ppm)

Sequencing barley UDP-glucosyltransferase shows no obvious haplotype (or SNP) that differentiates resistant from susceptible genotypes

Base pair															
Genotype	281	311	860	1031	1609	1785	1828	1936	2355	2385	2403	2417	2506	2530	Haplotype
CI4196	G	Т		Α	G	тсс	-	Α	G	С	Α	Т	Α	А	Α
Frederickson	G	Т		Α	G	тсс	-	Α	G	С	Α	Т	Α	А	Α
VIR16537	G	Т		Α	G	тсс	-	Α	G	С	Α	Т	Α	Α	А
Atahualpa	G	Т		Α	G	-CC	-	Α	G	С	Α	Т	Α	G	В
OWBR	G	т		А	G	тсс	A	А	G	С	А	т	A	G	С
Steptoe	G	Т		Α	G	тсс	Α	Α	G	С	Α	Т	Α	G	С
CIho14765				Α	G	TC-	Т	С	Α	Т	G	С	G	G	D
OWBD	G	С		Α	G	TC-	Т	С	Α	Т	G	С	G	G	D
PI282651	G	С		G	G	TC-	Т	С	G	С	G	С	G	G	E
M69	G	С	AC	G	Т	TC-	Т	С	G	С	G	С	G	G	F
Morex	G	С	AC	G	т	TC-	Т	С	G	С	G	С	G	G	F
PI361705			AC	G	Т	TC-	Т	С	G	С	G	С	G	G	F
Stander	G	С	AC	G	Т	TC-	Т	С	G	С	G	С	G	G	F
PI383933	G	С	AC	G	G	TC-	Т	С	G	С	G	С	G	G	G
W544			AC	G	G	TC-	Т	С	G	С	G	С	G	G	G
Chevron	Α	С	AC	G	G	-C-	Т	С	G	С	G	С	G	G	Н
CIho9056	Α	С	AC	G	G	-C-	Т	С	G	С	G	С	G	G	Н
HV707	Α	С	AC	G	G	-C-	Т	С	G	С	G	С	G	G	Н
PI402396	Α	С			G	-C-	Т	С	G	С	G	С	G	G	Н
PI525187	Α	С			G	-C-	Т	С	G	С	G	С	G	G	Н

Wheat-Fusarium interaction

- Examine disease phenotypes between plants carrying a resistant and susceptible allele at the chromosome 3BS FHB resistant locus (Type II resistance)
- Identify wheat genes that respond to *F. graminearum infection*

Wheat Affymetrix GeneChip

• Identify genes that exhibit differential expression between plants carrying a resistant and susceptible allele at the chromosome 3BS FHB resistant locus (Type II resistance)

Disease phenotypes in type II resistant and susceptible genotypes

Jia et al., 2009

Fungal biomass and DON accumulation are similar in inoculated spikelets of resistant and susceptible wheat genotypes

Jia et al., 2009

Genes induced and repressed in resistant and susceptible genotypes

Genes induced:

Defense response genes Oxidative burst related genes P450s

Protease inhibitors Tryptophan biosynthetic genes UDP-glucosyltransferases Transporters (ABC, MATE) Transcription factors Ethylene and jasmonic acid related

Genes repressed:

Photosynthesis-related genes Tubulins Microtubules Ribosomal protein genes Chromatin related Proline rich proteins Genes differentially expressed between plants carrying the resistant or susceptible

allele for the 3BS QTL:

- Expansin
- proline rich protein
- NB-ARC
- Bowman-Birk trypsin inhibitor
- Histidine rich Ca2+ binding protein

Jia et al., 2009

Triticeae - F. graminearum interaction

Acknowledgements

Muehlbauer lab

Jayanand Boddu Seungho Cho Stephanie Gardiner Haiyan Jia Warren Kruger Ben Millett Sanghyun Shin

Collaborators

Jim Anderson Gerhard Adam Franz Berthiller Ruth Dill-Macky Yanhong Dong Christian Hametner Wolfgang Schweiger Kye-Yong Seong Kevin Smith Brian Steffenson

Funding: USDA-CSREES-IFAFS, USDA-ARS U.S. Wheat and Barley Scab Initiative, Minnesota Small Grains Initiative

